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Lecture 1: Course Introduction

Read: (All readings are from Cormen, Leiserson, Rivest and Steinpduction to Algorithms2nd Edition). Review
Chapts. 1-5in CLRS.

What is an algorithm? Our text defines aalgorithmto be any well-defined computational procedure that takes some
values asnputand produces some valuesaagput Like a cooking recipe, an algorithm provides a step-by-step
method for solving a computational problem. Unlike programs, algorithms are not dependent on a particular
programming language, machine, system, or compiler. They are mathematical entities, which can be thought of
as running on some sort @fealized computewith an infinite random access memory and an unlimited word
size. Algorithm design is all about the mathematical theory behind the design of good programs.

Why study algorithm design? Programming is a very complex task, and there are a number of aspects of program-
ming that make it so complex. The first is that most programming projects are very large, requiring the coor-
dinated efforts of many people. (This is the topic a course like software engineering.) The next is that many
programming projects involve storing and accessing large quantities of data efficiently. (This is the topic of
courses on data structures and databases.) The last is that many programming projects involve solving complex
computational problems, for which simplistic or naive solutions may not be efficient enough. The complex
problems may involve numerical data (the subject of courses on numerical analysis), but often they involve
discrete data. This is where the topic of algorithm design and analysis is important.

Although the algorithms discussed in this course will often represent only a tiny fraction of the code that is
generated in a large software system, this small fraction may be very important for the success of the overall
project. An unfortunately common approach to this problem is to first design an inefficient algorithm and
data structure to solve the problem, and then take this poor design and attempt to fine-tune its performance. The
problem is that if the underlying design is bad, then often no amount of fine-tuning is going to make a substantial
difference.

The focus of this course is on how to design good algorithms, and how to analyze their efficiency. This is among
the most basic aspects of good programming.

Course Overview: This course will consist of a number of major sections. The first will be a short review of some
preliminary material, including asymptotics, summations, and recurrences and sorting. These have been covered
in earlier courses, and so we will breeze through them pretty quickly. We will then discuss approaches to
designing optimization algorithms, including dynamic programming and greedy algorithms. The next major
focus will be on graph algorithms. This will include a review of breadth-first and depth-first search and their
application in various problems related to connectivity in graphs. Next we will discuss minimum spanning trees,
shortest paths, and network flows. We will briefly discuss algorithmic problems arising from geometric settings,
that is, computational geometry.

Most of the emphasis of the first portion of the course will be on problems that can be solved efficiently, in the
latter portion we will discuss intractability and NP-hard problems. These are problems for which no efficient
solution is known. Finally, we will discuss methods to approximate NP-hard problems, and how to prove how
close these approximations are to the optimal solutions.

Issues in Algorithm Design: Algorithms are mathematical objects (in contrast to the must more concrete notion of
a computer program implemented in some programming language and executing on some machine). As such,
we can reason about the properties of algorithms mathematically. When designing an algorithm there are two
fundamental issues to be considered: correctness and efficiency.

It is important to justify an algorithm’s correctness mathematically. For very complex algorithms, this typically
requires a careful mathematical proof, which may require the proof of many lemmas and properties of the
solution, upon which the algorithm relies. For simple algorithms (BubbleSort, for example) a short intuitive
explanation of the algorithm’s basic invariants is sufficient. (For example, in BubbleSort, the principal invariant
is that on completion of théh iteration, the last elements are in their proper sorted positions.)

Lecture Notes 2 CMSC 451

www.manaraa.com



Establishing efficiency is a much more complex endeavor. Intuitively, an algorithm'’s efficiency is a function

of the amount of computational resources it requires, measured typically as execution time and the amount of
space, or memory, that the algorithm uses. The amount of computational resources can be a complex function of
the size and structure of the input set. In order to reduce matters to their simplest form, it is common to consider
efficiency as a function of input size. Among all inputs of the same size, we consider the maximum possible
running time. This is calledvorst-case analysislt is also possible, and often more meaningful, to measure
average-case analysigwverage-case analyses tend to be more complex, and may require that some probability
distribution be defined on the set of inputs. To keep matters simple, we will usually focus on worst-case analysis
in this course.

Throughout out this course, when you are asked to present an algorithm, this means that you need to do three
things:

e Present a clear, simple and unambiguous description of the algorithm (in pseudo-code, for example). They
key here is keep it simplé Uninteresting details should be kept to a minimum, so that the key compu-
tational issues stand out. (For example, it is not necessary to declare variables whose purpose is obvious,
and it is often simpler and clearer to simply say, “Addto the end of list.” than to present code to do
this or use some arcane syntax, suchagsertAtEnd X ).”)

e Present a justification or proof of the algorithm’s correctness. Your justification should assume that the
reader is someone of similar background as yourself, say another student in this class, and should be con-
vincing enough make a skeptic believe that your algorithm does indeed solve the problem correctly. Avoid
rambling about obvious or trivial elements. A good proof provides an overview of what the algorithm
does, and then focuses on any tricky elements that may not be obvious.

e Present a worst-case analysis of the algorithms efficiency, typically it running time (but also its space, if
space is an issue). Sometimes this is straightforward, but if not, concentrate on the parts of the analysis
that are not obvious.

Note that the presentation does not need to be in this order. Often it is good to begin with an explanation of
how you derived the algorithm, emphasizing particular elements of the design that establish its correctness and
efficiency. Then, once this groundwork has been laid down, present the algorithm itself. If this seems to be a bit
abstract now, don’t worry. We will see many examples of this process throughout the semester.

Lecture 2: Mathematical Background

Read: Review Chapters 1-5 in CLRS.

Algorithm Analysis: Today we will review some of the basic elements of algorithm analysis, which were covered in
previous courses. These include asymptotics, summations, and recurrences.

Asymptotics: Asymptotics involves O-notation (“big-Oh”) and its many relativ@s©, o (“little-Oh”), w. Asymp-
totic notation provides us with a way to simplify the functions that arise in analyzing algorithm running times
by ignoring constant factors and concentrating on the trends for large valued-of example, it allows us to
reason that for three algorithms with the respective running times

n?logn 4+ 4n® + 52nlogn € ©O(n’logn)
15n2 + Tnlog®n € O(n?)
3n+4logsn+19n? € O(n?).

Thus, the first algorithm is significantly slower for largewhile the other two are comparable, up to a constant
factor.

Since asymptotics were covered in earlier courses, | will assume that this is familiar to you. Nonetheless, here
are a few facts to remember about asymptotic notation:
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Ignore constant factors: Multiplicative constant factors are ignored. For exampin is O(n). Constant
factors appearing exponents cannot be ignored. For exaiplés not O(2").

Focus on largen: Asymptotic analysis means that we consider trends for large values Bifius, the fastest
growing function ofn is the only one that needs to be considered. For exardptdpgn + 25nlogn +
(logn)" is ©(n?logn).

Polylog, polynomial, and exponential: These are the most common functions that arise in analyzing algo-
rithms:

Polylogarithmic: Powers oflog n, such aglogn)?. We will usually write this agog” .
Polynomial: Powers ofz, such as:* andy/n = n'/2.
Exponential: A constant (not 1) raised to the powersuch ass™.

An important fact is that polylogarithmic functions are strictly asymptotically smaller than polynomial
function, which are strictly asymptotically smaller than exponential functions (assuming the base of the
exponent is bigger than 1). For example, if wedemean “asymptotically smaller” then

log®n < nb < "

for anya, b, ande, provided that > 0 andc > 1.

Logarithm Simplification: It is a good idea to first simplify terms involving logarithms. For example, the
following formulas are useful. Here b, ¢ are constants:

log, n

1 = = O(1
Ogp N loga b 6( 0g, TL)
log,(n®) = clog,n = ©(log,n)
bloga no_ nloga b.

Avoid usinglogn in exponents. The last rule above can be used to achieve this. For example, rather than
saying3'os2 ", express this ag'°s2 3 ~ n1-585,

Following the conventional sloppiness, | will often sayn?), when in fact the stronger stateméntn?) holds.
(This is just because it is easier to say “oh” than “theta”.)

Summations: Summations naturally arise in the analysis of iterative algorithms. Also, more complex forms of analy-
sis, such as recurrences, are often solved by reducing them to summations. Solving a summation means reducing
it to aclosed form formulathat is, one having no summations, recurrences, integrals, or other complex operators.

In algorithm design it is often not necessary to solve a summation exactly, since an asymptotic approximation or
close upper bound is usually good enough. Here are some common summations and some tips to use in solving
summations.

Constant Series: For integers: andb,
b

Zl = max(b—a+ 1,0).

Notice that wherb = a — 1, there are no terms in the summation (since the index is assumed to count
upwards only), and the result is 0. Be careful to checkihata — 1 before applying this formula blindly.

Arithmetic Series: Forn > 0,
nin+1)

Zi:1+2+...+n: 5
=0

This is©(n?). (The starting bound could have just as easily been setto 1 as 0.)
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Geometric Series: Let x # 1 be any constant (independentgf then forn > 0,

n n+1
) T —1
=0

r—1

If 0 < 2 < 1thenthisisO(1). If z > 1, then this is9(z™), that is, the entire sum is proportional to the
last element of the series.

Quadratic Series: Forn > 0,

n
i2:12+22+...+n2zw.

=0

Linear-geometric Series: This arises in some algorithms based on trees and recursionz Eetl be any
constant, then fon > 0,

-1
nZixi =x+222+32% 4 na” = (nil)x(rwl) et
P (x —1)2

As n becomes large, this is asymptotically dominated by the term 1)z /(z — 1)2. The multi-
plicative termn — 1 is very nearly equal te for largen, and, sincer is a constant, we may multiply this
times the constaritr — 1)2 /2 without changing the asymptotics. What remain®{sz").

Harmonic Series: This arises often in probabilistic analyses of algorithms. It does not have an exact closed
form solution, but it can be closely approximated. koe 0,

n

1 1 1
Z; — 4l 5t gt = (Inn)+0(1),

There are also a few tips to learn about solving summations.

Summations with general bounds: When a summation does not start at the 1 or 0, as most of the above for-
mulas assume, you can just split it up into the difference of two summations. For examples oK b

b b a—1
Do) = Y i)=Y f).
1=a =0 1=0

Linearity of Summation;: Constant factors and added terms can be split out to make summations simpler.

D (A+3i(i—2)=) 4+3i°—6i=) 4+3) i*—6) i.

Now the formulas can be to each summation individually.

Approximate using integrals: Integration and summation are closely related. (Integration is in some sense
a continuous form of summation.) Here is a handy formula. flief) be anymonotonically increasing
function(the function increases asincreases).

n n+1
e < 0 A0) < / f(z)da.

Example: Right Dominant Elements As an example of the use of summations in algorithm analysis, consider the
following simple problem. We are given a ligt of numeric values. We say that an element/ofs right
dominantif it is strictly larger than all the elements that follow it in the list. Note that the last element of the list

0
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is always right dominant, as is the last occurrence of the maximum element of the array. For example, consider
the following list.
L=(10,9,5,13,2,7,1,8,4,6,3)

The sequence of right dominant elements(@fe 8, 6, 3).

In order to make this more concrete, we should think about haw represented. It will make a difference
whetherL is represented as an array (allowing for random access), a doubly linked list (allowing for sequential
access in both directions), or a singly linked list (allowing for sequential access in only one direction). Among
the three possible representations, the array representation seems to yield the simplest and clearest algorithm.
However, we will design the algorithm in such a way that it only performs sequential scans, so it could also
be implemented using a singly linked or doubly linked list. (This is common in algorithms. Chose your rep-
resentation to make the algorithm as simple and clear as possible, but give thought to how it may actually be
implemented. Remember that algorithms are read by humans, not compilers.) We will assume here that the
array L of sizen is indexed from 1 ton.

Think for a moment how you would solve this problem. Can you se@@r) time algorithm? (If not, think

a little harder.) To illustrate summations, we will first present a nae?) time algorithm, which operates

by simply checking for each element of the array whether all the subsequent elements are strictly smaller.
(Although this example is pretty stupid, it will also serve to illustrate the sort of style that we will use in
presenting algorithms.)

Right Dominant Elements (Naive Solution)

/I Input: List L of numbers given as an array L[1..n]
/I Returns: List D containing the right dominant elements of L
RightDominant(L) {
D = empty list
for i = 1 to n)
isDominant = true
for (j = i+1 to n)
if (Ali] <= A[j]) isDominant = false
if (isDominant) append A[i] to D
}

return D

If I were programming this, | would rewrite the innef)(loop as a while loop, since we can terminate the
loop as soon as we find thalt{i] is not dominant. Again, this sort of optimization is good to keep in mind in
programming, but will be omitted since it will not affect the worst-case running time.

The time spent in this algorithm is dominated (no pun intended) by the time spent in thejiploap( On the

ith iteration of the outer loop, the inner loop is executed fiom1 ton, foratotalofn — (i + 1)+ 1=n—1

times. (Recall the rule for the constant series above.) Each iteration of the inner loop takes constant time. Thus,
up to a constant factor, the running time, as a function,a$ given by the following summation:

n

T(n) = Z(n —1).
i=1
To solve this summation, let us expand it, and put it into a form such that the above formulas can be used.
Tn) = n—-1)+n—-2)+...+42+1+0
= 0+1+2+...+(n—-2)+(n—-1)
- (n—1)n
= Z P = —.
; 2
=0
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The last step comes from applying the formula for the linear series (using in place ofn in the formula).

As mentioned above, there is a simp}én) time algorithm for this problem. As an exercise, see if you can find
it. As an additional challenge, see if you can design your algorithm so it only performs a single left-to-right scan
of the list L. (You are allowed to use up 10(n) working storage to do this.)

Recurrences: Another useful mathematical tool in algorithm analysis will be recurrences. They arise naturally in the
analysis of divide-and-conquer algorithms. Recall that these algorithms have the following general structure.

Divide: Divide the problem into two or more subproblems (ideally of roughly equal sizes),
Conquer: Solve each subproblem recursively, and
Combine: Combine the solutions to the subproblems into a single global solution.

How do we analyze recursive procedures like this one? If there is a simple pattern to the sizes of the recursive
calls, then the best way is usually by setting ugeurrence that is, a function which is defined recursively in
terms of itself. Here is a typical example. Suppose that we break the problem into two subproblems, each of size
roughlyn/2. (We will assume exactly,/2 for simplicity.). The additional overhead of splitting and merging

the solutions iD(n). When the subproblems are reduced to size 1, we can solve thérfi jrtime. We will

ignore constant factors, writing(n) just asn, yielding the following recurrence:

Tn) = 1 if n=1,
T(n) = 2T(n/2)+n ifn>1.

Note that, since we assume thais an integer, this recurrence is not well defined unteissa power of 2 (since
otherwisen /2 will at some point be a fraction). To be formally correct, | should either writ¢2 | or restrict
the domain of, but | will often be sloppy in this way.

There are a number of methods for solving the sort of recurrences that show up in divide-and-conquer algo-
rithms. The easiest method is to apply Master Theoremgiven in CLRS. Here is a slightly more restrictive
version, but adequate for a lot of instances. See CLRS for the more complete version of the Master Theorem
and its proof.

Theorem: (Simplified Master Theorem) Let > 1, b > 1 be constants and I&t(n) be the recurrence
T(n) = aT(n/b) + cn*,

defined forn > 0.

Case 1:a > b* thenT'(n) is ©O(n'o8: 9).

Case 2: a = b* thenT'(n) is O(n* logn).

Case 3: a < V¥ thenT'(n) is O(n*).
Using this version of the Master Theorem we can see that in our recuieac b = 2, andk = 1, soa = b*
and Case 2 applies. Thilgn) is O(nlogn).

There many recurrences that cannot be put into this form. For example, the following recurrence is quite
common:T'(n) = 2T'(n/2) + nlogn. This solves tdl'(n) = ©(n log? n), but the Master Theorem (either this
form or the one in CLRS will not tell you this.) For such recurrences, other methods are needed.

Lecture 3: Review of Sorting and Selection

Read: Review Chapts. 6-9 in CLRS.
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Review of Sorting: Sorting is among the most basic problems in algorithm design. We are given a sequence of items,
each associated with a givéry value The problem is to permute the items so that they are in increasing (or
decreasing) order by key. Sorting is important because it is often the first step in more complex algorithms.

Sorting algorithms are usually divided into two classeternal sorting algorithmswhich assume that data is
stored in an array in main memory, aexternal sorting algorithmwhich assume that data is stored on disk or
some other device that is best accessed sequentially. We will only consider internal sorting.

You are probably familiar with one or more of the standard sintie?) sorting algorithms, such dssertion-

Sort, SelectionSorandBubbleSort (By the way, these algorithms are quite acceptable for small lists of, say,
fewer than 20 elements.) BubbleSort is the easiest one to remember, but it widely considered to be the worst of
the three.

The three canonical efficient comparison-based sorting algorithniderge Sort QuickSort andHeapSort All
run in ©(n logn) time. Sorting algorithms often have additional properties that are of interest, depending on the
application. Here are two important properties.

In-place: The algorithm uses no additional array storage, and hence (other than perhaps the system'’s recursion
stack) it is possible to sort very large lists without the need to allocate additional working storage.

Stable: A sorting algorithm is stable if two elements that are equal remain in the same relative position after
sorting is completed. This is of interest, since in some sorting applications you sort first on one key and
then on another. It is nice to know that two items that are equal on the second key, remain sorted on the
first key.

Here is a quick summary of the fast sorting algorithms. If you are not familiar with any of these, check out the
descriptions in CLRS. They are shown schematically in Fig. 1

QuickSort: 1t works recursively, by first selecting a random “pivot value” from the array. Then it partitions the
array into elements that are less than and greater than the pivot. Then it recursively sorts each part.

QuickSort is widely regarded as the fastest of the fast sorting algorithms (on modern machines). One
explanation is that its inner loop compares elements against a single pivot value, which can be stored in
a register for fast access. The other algorithms compare two elements in the array. This is considered
an in-place sorting algorithm, since it uses no other array storage. (It does implicitly use the system'’s
recursion stack, but this is usually not counted.) Ih@ stable There is a stable version of QuickSort,

but it is not in-place. This algorithm i@ (nlogn) in the expected cas@nd©(n?) in the worst case. If
properly implemented, the probability that the algorithm takes asymptotically longer (assuming that the
pivot is chosen randomly) is extremely small for large

X
QuickSort: 4 partition —»=

T

sort sort

MergeSort: | | | \ \ |

sort

HeapSort: [ | — buidHeap— ‘ga extrCc)tMaxa L ]

Fig. 1: CommorO(n logn) comparison-based sorting algorithms.
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MergeSort: MergeSort also works recursively. It is a classical divide-and-conquer algorithm. The array is split
into two subarrays of roughly equal size. They are sorted recursively. Then the two sorted subarrays are
merged together i®(n) time.

MergeSort is the onlgtablesorting algorithm of these three. The downside is the MergeSort is the only
algorithm of the three that requires additional array storage (ignoring the recursion stack), and thus it is
not in-place This is because the merging process merges the two arrays into a third array. Although it is
possible to merge arrays in-place, it cannot be doré(im) time.

HeapSort: HeapSort is based on a nice data structure, callegbg which is an efficient implementation of a
priority queue data structure. A priority queue supports the operations of inserting a key, and deleting the
element with the smallest key value. A heap can be builtféeys in©(n) time, and the minimum key
can be extracted i®(log n) time. HeapSort is am-placesorting algorithm, but it i;mot stable

HeapSort works by building the heap (ordered in reverse order so that the maximum can be extracted
efficiently) and then repeatedly extracting the largest element. (Why it extracts the maximum rather than
the minimum is an implementation detail, but this is the key to making this work as an in-place sorting
algorithm.)

If you only want to extract thé smallest values, a heap can allow you to do th8(s + k log n) time. A

heap has the additional advantage of being used in contexts where the priority of elements changes. Each
change of priority (key value) can be processe®{tog n) time.

Which sorting algorithm should you implement when implementing your programs? The correct answer is
probably “none of them”. Unless you know that your input has some special properties that suggest a much
faster alternative, it is best to rely on the library sorting procedure supplied on your system. Presumably, it
has been engineered to produce the best performance for your system, and saves you from debugging time.
Nonetheless, it is important to learn about sorting algorithms, since the fundamental concepts covered there
apply to much more complex algorithms.

Selection: A simpler, related problem to sorting is selection. The selection problem is, given ardanfaynumbers
(not sorted), and an integér wherel < k < n, return thekth smallest value ofl. Although selection can be
solved inO(nlogn) time, by first sorting4 and then returning theth element of the sorted list, it is possible
to select thekth smallest element i®(n) time. The algorithm is a variant of QuickSort.

Lower Bounds for Comparison-Based Sorting: The fact thatO(n log n) sorting algorithms are the fastest around
for many years, suggests that this may be the best that we can do. Can we sort faster? The claim is no, pro-
vided that the algorithm is comparison-based:onparison-basesdorting algorithm is one in which algorithm
permutes the elements based solely on the results of the comparisons that the algorithm makes between pairs of
elements.

All of the algorithms we have discussed so far are comparison-based. We will see that exceptions exist in
special cases. This does not preclude the possibility of sorting algorithms whose actions are determined by
other operations, as we shall see below. The following theorem gives the lower bound on comparison-based
sorting.

Theorem: Any comparison-based sorting algorithm has worst-case running{méog n).

We will not present a proof of this theorem, but the basic argument follows from a simple analysis of the number
of possibilities and the time it takes to distinguish among them. There!amays to permute a given set of

n numbers. Any sorting algorithm must be able to distinguish between each of these different possibilities,
since two different permutations need to treated differently. Since each comparison leads to only two possible
outcomes, the execution of the algorithm can be viewed as a binary tree. (This is a bit abstract, but given a sorting
algorithm it is not hard, but quite tedious, to trace its execution, and set up a hew node each time a decision is
made.) This binary tree, calleddecision treemust have at least! leaves, one for each of the possible input
permutations. Such a tree, even if perfectly balanced, must height dgledst By Stirling’s approximationy!
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is, up to constant factors, roughiy/e)™. Plugging this in and simplifying yields th(n log n) lower bound.
This can also be generalized to show thatatierage-caséime to sort is als@(n logn).

Linear Time Sorting: TheQ(nlogn) lower bound implies that if we hope to sort numbers faster tha(imlog n)
time, we cannot do it by making comparisons alone. In some special cases, it is possible to sort without the
use of comparisons. This leads to the possibility of sorting in linear (thél(is)) time. Here are three such
algorithms.

Counting Sort: Counting sort assumes that each input is an integer in the range frorh. 1Tioe algorithm
sorts in@(n + k) time. Thus, ifk is O(n), this implies that the resulting sorting algorithm runsdn)
time. The algorithm requires an additior@a(n + k) working storage but has the nice feature that it is
stable. The algorithm is remarkably simple, but deceptively clever. You are referred to CLRS for the
details.

Radix Sort: The main shortcoming of CountingSort is that (due to space requirements) it is only practical for
a very small ranges of integers. If the integers are in the range from say, 1 to a million, we may not want
to allocate an array of a million elements. RadixSort provides a nice way around this by sorting numbers
one digit, or one byte, or generally, some groups of bits, at a time. As the number of bits in each group
increases, the algorithm is faster, but the space requirements go up.

The idea is very simple. Let’s think of our list as being composed oftegers, each having decimal

digits (or digits in any base). To sort these integers we simply sort repeatedly, starting at the lowest order
digit, and finishing with the highest order digit. Since the sorting algorithm is stable, we know that if the
numbers are already sorted with respect to low order digits, and then later we sort with respect to high
order digits, numbers having the same high order digit will remain sorted with respect to their low order
digit. An example is shown in Figure 2.

Input Output
576 49[4] 9[5]4 [1]76 176
494 19[4] 5716 [1]94 194
194 95[4] 1[7]6 [2]78 278
206 = 576)] = 278 = [2]9¢ = 296
278 29[6] 4[9]4 [4]94 494
176 1716] 1[9]4 [5]76 576
954 27(8] 2[9]6 [9]54 954

Fig. 2: Example of RadixSort.

The running time i (d(n + k)) whered is the number of digits in each valuejs the length of the list,
andk is the number of distinct values each digit may have. The space nee@éd is k).

A common application of this algorithm is for sorting integers over some range that is larget,than

still polynomial inn. For example, suppose that you wanted to sort a list of integers in the range from 1
to n2. First, you could subtract 1 so that they are now in the range fromi3 te 1. Observe that any
number in this range can be expressed as 2-digit number, where each digit is over the range from 0 to
n — 1. In particular, given any integel in this range, we can writé = an + b, wherea = |L/n] and

b = L mod n. Now, we can think ofL as the 2-digit numbefa, b). So, we can radix sort these numbers

in time ©(2(n + n)) = O(n). In general this works to sort amynumbers over the range from 16, in

O(dn) time.

BucketSort: CountingSort and RadixSort are only good for sorting small integers, or at least objects (like
characters) that can be encoded as small integers. What if you want to sort a set of floating-point numbers?
In the worst-case you are pretty much stuck with using one of the comparison-based sorting algorithms,
such as QuickSort, MergeSort, or HeapSort. However, in special cases where you have reason to believe
that your numbers are roughly uniformly distributed over some range, then it is possible to do better. (Note
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that this is astrongassumption. This algorithm should not be applied unless you have good reason to
believe that this is the case.)

Suppose that the numbers to be sorted range over some interv@l, say(lt is possible inO(n) time

to find the maximum and minimum values, and scale the numbers to fit into this range.) The idea is
the subdivide this interval inta subintervals. For example, if = 100, the subintervals would be
[0,0.01),[0.01,0.02),[0.02,0.03), and so on. We create different buckets, one for each interval. Then

we make a pass through the list to be sorted, and using the floor function, we can map each value to its
bucket index. (In this case, the index of elementould be|100x].) We then sort each bucket in as-
cending order. The number of points per bucket should be fairly small, so even a quadratic time sorting
algorithm (e.g. BubbleSort or InsertionSort) should work. Finally, all the sorted buckets are concatenated
together.

The analysis relies on the fact that, assuming that the numbers are uniformly distributed, the number of
elements lying within each bucket on average is a constant. Thus, the expected time needed to sort each
bucket isO(1). Since there are buckets, the total sorting time &(n). An example illustrating this idea

is given in Fig. 3.
B

o

1| ++[.10]4+.14[++17]/
A ;Z 38
[.42].71].10].14] .86[.38] .59].17].81] .56 =y

5| ++.56 | ++.59]/

61

7 71

8| +~.81|1+.86]/

o/

Fig. 3: BucketSort.

Lecture 4: Dynamic Programming: Longest Common Subsequence
Read: Introduction to Chapt 15, and Section 15.4 in CLRS.

Dynamic Programming: We begin discussion of an important algorithm design technique, aiieaimic program-
ming (or DP for short). The technique is among the most powerful for designing algorithms for optimization
problems. (This is true for two reasons. Dynamic programming solutions are based on a few common elements.
Dynamic programming problems are typically optimization problems (find the minimum or maximum cost so-
lution, subject to various constraints). The technique is related to divide-and-conquer, in the sense that it breaks
problems down into smaller problems that it solves recursively. However, because of the somewhat different
nature of dynamic programming problems, standard divide-and-conquer solutions are not usually efficient. The
basic elements that characterize a dynamic programming algorithm are:

Substructure: Decompose your problem into smaller (and hopefully simpler) subproblems. Express the solu-
tion of the original problem in terms of solutions for smaller problems.

Table-structure: Store the answers to the subproblems in a table. This is done because subproblem solutions
are reused many times.

Bottom-up computation: Combine solutions on smaller subproblems to solve larger subproblems. (Our text
also discusses a top-down alternative, catteimoizatior)
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The most important question in designing a DP solution to a problem is how to set up the subproblem structure.
This is called theformulation of the problem. Dynamic programming is not applicable to all optimization
problems. There are two important elements that a problem must have in order for DP to be applicable.

Optimal substructure: (Sometimes called therinciple of optimality) It states that for the global problem to
be solved optimally, each subproblem should be solved optimally. (Not all optimization problems satisfy
this. Sometimes it is better to lose a little on one subproblem in order to make a big gain on another.)

Polynomially many subproblems: An important aspect to the efficiency of DP is that the total number of
subproblems to be solved should be at most a polynomial number.

Strings: One important area of algorithm design is the study of algorithms for character strings. There are a number
of important problems here. Among the most important has to do with efficiently searching for a substring
or generally a pattern in large piece of text. (This is what text editors and programs like “grep” do when you
perform a search.) In many instances you do not want to find a piece of text exactly, but rather something that is
similar. This arises for example in genetics research and in document retrieval on the web. One common method
of measuring the degree of similarity between two strings is to compute their longest common subsequence.

Longest Common Subsequencet et us think of character strings as sequences of characters. Given two sequences
X = (x1,29,...,&m) @andZ = (z1, 22, ..., z), We say thatZ is asubsequencef X if there is a strictly in-
creasing sequence kfndices(iy, ia, ..., i) (1 < iy < iz < ... <ip <n)suchthatZ = (X;,, X,,,..., X;,.).

For example, leX = (ABRACADABRAand letZ = (AADAA), thenZ is a subsequence &f.
Given two stringsX andY’, thelongest common subsequerafeX andY is a longest sequencg that is a

subsequence of botki andY". For example, leX = (ABRACADABRAand letY” = (YABBADABBADOQ
Then the longest common subsequencg is (ABADABA. See Fig. 4

Fig. 4: An example of the LCS of two strings andY'.

TheLongest Common Subsequence Prohle@S) is the following. Given two sequencés = (x1,...,x.,)
andY = (y1,...,y,) determine a longest common subsequence. Note that it is not always unique. For example
the LCS of(ABC) and(BAC) is either(AC) or (BC).

DP Formulation for LCS: The simple brute-force solution to the problem would be to try all possible subsequences
from one string, and search for matches in the other string, but this is hopelessly inefficient, since there are an
exponential number of possible subsequences.

Instead, we will derive a dynamic programming solution. In typical DP fashion, we need to break the prob-
lem into smaller pieces. There are many ways to do this for strings, but it turns out for this problem that
considering all pairs oprefixeswill suffice for us. Aprefix of a sequence is just an initial string of values,

X; = (x1,22,...,2;). Xo is the empty sequence.

The idea will be to compute the longest common subsequence for every possible pair of prefixgs, jLet
denote the length of the longest common subsequengg ahdY;. For example, in the above case we have
X5 = (ABRAGC andYs = (YABBAD. Their longest common subsequencéABA). Thus,c[5, 6] = 3.

Which of thec|[s, j] values do we compute? Since we don’t know which will lead to the final optimum, we
compute all of them. Eventually we are interested[in, n] since this will be the LCS of the two entire strings.
The idea is to computeli, j] assuming that we already know the valuegef, j'], fori’ < i andj’ < j (but

not both equal). Here are the possible cases.
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Basis: c[i, 0] = c[j,0] = 0. If either sequence is empty, then the longest common subsequence is empty.

Last characters match: Supposer; = y;. For example: LelX; = (ABCA) and letY; = (DACA). Since
both end inA, we claim that the LC®nustalso end inA. (We will leave the proof as an exercise.) Since
the A is part of the LCS we may find the overall LCS by removifigrom both sequences and taking the
LCSof X;_1 = (ABC) andY;_, = (DAC) which is(AC) and then adding! to the end, giving AC' 4)
as the answer. (At first you might object: But how did you know that theseAisonatched with each
other. The answer is that we don't, but it will not make the LCS any smaller if we do.) This is illustrated
at the top of Fig. 5.

if z; =y thencli,j] =cli —1,j —1]+1

X| A] [ X1 ]
Last chars match: yj >+~ JJLcs  laddtoLCS
Y, m
Xi-1 IXI skip x;
JLCS
Last chars do not _ E
match
* ) x, A
JLCS
X skiny,

Fig. 5: The possibe cases in the DP formulation of LCS.

Last characters do not match: Suppose that; # y;. In this caser; andy; cannot both be in the LCS (since
they would have to be the last character of the LCS). Thus eithismot part of the LCS, oy; is notpart
of the LCS (and possibligothare not part of the LCS).
At this point it may be tempting to try to make a “smart” choice. By analyzing the last few characters
of X; andY}, perhaps we can figure out which character is best to discard. However, this approach is
doomed to failure (and you are strongly encouraged to think about this, since it is a common point of
confusion.) Instead, our approach is to take advantage of the fact that we have already precomputed
smaller subproblems, and use these results to guide us.
In the first casex; is not in the LCS) the LCS ak; andY] is the LCS ofX;_; andY}, which isc[i —1, j].
In the second case( is not in the LCS) the LCS is the LCS &f; andY,_; which isc[i, j — 1]. We do
not know which is the case, so we try both and take the one that glves us the longer LCS. This is illustrated
at the bottom half of Fig. 5.

if x; # y; thenc[i, j] = max(c[i — 1, 7], ¢c[i,j — 1])

Combining these observations we have the following formulation:

0 ifi=0o0rj =0,
cli,j]=4 cli—1,j—1+1 if 4,5 > 0 anda; = y;,
max(c[i, j — 1], c[i — 1, 4]) if i,7 > 0andz; # y;.

Implementing the Formulation: The task now is to simply implement this formulation. We concentrate only on
computing the maximurtengthof the LCS. Later we will see how to extract the actual sequence. We will store
some helpful pointers in a parallel arr&jQ)..m, 0..n]. The code is shown below, and an example is illustrated
in Fig. 6
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Y: 3 4=n Y:
C B

0 1.0:0:0: 00 X = BACDB 0

1B L Y = BDCB 178
x: 2 A,,, 1 x: 2 A,,

3 C| o 20 3 C

4 D 0O 12 2 4 D|
m=5 Bl 0. 1. 2. 2 LCS = BCB m=5 B start here

LCS Length Table with back pointers included

Fig. 6: Longest common subsequence example for the sequ&neeSBACDB) andY = (BC'DB). The numeric
table entries are the valuesdf, j] and the arrow entries are used in the extraction of the sequence.

Build LCS Table

LCS(x[1..m], y[1..n]) { /I compute LCS table
int c[0..m, 0..n]
fori = 0tom /I init column O
c[i,0] = 0; b[i,0] = SKIPX
for j = 0ton /I init row O
c[0,j] = 0; b[0,j] = SKIPY
for i = 1 tom /I fill rest of table
for j = 1ton
if (X[l == y[il) Il take X[i] (Y[]) for LCS
cfij = c[i-1,j-1]+1; bli,j] = addXY
else if (c[i-1,j] >= c[i,j-1]) /I X[i] not in LCS
cfij] = cli-1,jl; bfi,j] = skipX
else /I Y[j] not in LCS
cfij] = cfij-1]; b[i,j] = skipY
return c[m,n] /I return length of LCS
}

Extracting the LCS

getLCS(x[1..m], y[1..n], b[0..m,0..n]) {
LCSstring = empty string

i=m;j=n /I start at lower right
while(i = 0 && j = 0) /I go until upper left
switch b[i,j]
case addXY: /Il add X[i] (=Y[j])
add x[i] (or equivalently y[j]) to front of LCSstring
i--; I break
case skipX: i--; break Il skip X[i]
case skipY: j--; break Il skip Y[j]
return LCSstring
}
Lecture Notes 14 CMSC 451

www.manaraa.com



The running time of the algorithm is clearly(mn) since there are two nested loops withandn iterations,
respectively. The algorithm also us@émn) space.

Extracting the Actual Sequence: Extracting the final LCS is done by using the back pointers storéfinn, 0..n].
Intuitively b[¢, j] = addxy means thafX[i] andY[j] together form the last character of the LCS. So we take
this common character, and continue with erfiy— 1, j — 1] to the northwest™(). If b[i, j] = skipy, then we
know thatX [i] is not in the LCS, and so we skip it and gabfo— 1, j] above us{). Similarly, if b[z, j] = skip,-,
then we know thal’[;] is not in the LCS, and so we skip it and gob{o, j — 1] to the left ¢—). Following these
back pointers, and outputting a character with each diagonal move gives the final subsequence.

Lecture 5: Dynamic Programming: Chain Matrix Multiplication

Read: Chapter 15 of CLRS, and Section 15.2 in particular.

Chain Matrix Multiplication:  This problem involves the question of determining the optimal sequence for perform-
ing a series of operations. This general class of problem is important in compiler design for code optimization
and in databases for query optimization. We will study the problem in a very restricted instance, where the
dynamic programming issues are easiest to see.

Suppose that we wish to multiply a series of matrices
A1As .. A,

Matrix multiplication is an associative but not a commutative operation. This means that we are free to paren-
thesize the above multiplication however we like, but we are not free to rearrange the order of the matrices. Also
recall that when two (nonsquare) matrices are being multiplied, there are restrictions on the dimengigns. A
matrix hasp rows andg columns. You can multiply & x ¢ matrix A times ag x r matrix B, and the result

will be ap x r» matrix C. (The number of columns of must equal the number of rows 8f) In particular for
1<i<pandl <j<r,

Cli,j] = Ali, k]B[k, j].
k=1

This corresponds to the (hopefully familiar) rule that thg] entry of C' is the dot product of théth (horizontal)
row of A and thejth (vertical) column ofB. Observe that there ape total entries inC' and each take®(q) time
to compute, thus the total time to multiply these two matrices is proportional to the product of the dimensions,

pqr.
A * B = C

q = Multiplication
p p time = pgr

P m— P E—

q r
Fig. 7: Matrix Multiplication.

Note that although any legal parenthesization will lead to a valid result, not all involve the same number of
operations. Consider the case of 3 matricésbe5 x 4, A, be4 x 6 andA3 be6 x 2.

multCosf((A4;142)A43)] = (5-4-6)+ (5-6-2) =180,
multCosf(A;(A243))] = (4:-6-2)+(5-4-2) =88.

Even for this small example, considerable savings can be achieved by reordering the evaluation sequence.
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Chain Matrix Multiplication Problem: Given a sequence of matricds, A, ..., A, and dimensiongg, p1, ..., pn
where A; is of dimensiorp; | x p;, determine the order of multiplication (represented, say, as a binary
tree) that minimizes the number of operations.

Important Note: This algorithm does not perform the multiplications, it just determines the best order in which
to perform the multiplications.

Naive Algorithm: We could write a procedure which tries all possible parenthesizations. Unfortunately, the number
of ways of parenthesizing an expression is very large. If you have just one or two matrices, then there is only
one way to parenthesize. If you hawdtems, then there are — 1 places where you could break the list with
the outermost pair of parentheses, namely just after the 1st item, just after the 2nd item, etc., and just after the
(n — 1)st item. When we split just after theth item, we create two sublists to be parenthesized, oneiwith
items, and the other with — k items. Then we could consider all the ways of parenthesizing these. Since these
are independent choices, if there drevays to parenthesize the left sublist aRdvays to parenthesize the right
sublist, then the total i& - R. This suggests the following recurrence fofr), the number of different ways of
parenthesizing items:

1 ifn=1,
P(n) = { "1 p(1)P(n - k) if n > 2.

This is related to a famous function in combinatorics called@htalan numbergwhich in turn is related to the
number of different binary trees onnodes). In particulaP(n) = C(n — 1), whereC'(n) is thenth Catalan

number: . )
n
C(n) = n—&—l(n/)'

Applying Stirling’s formula (which is given in our text), we find th@{(n) € Q(4" /n?/?). Since4™ is exponen-
tial andn3/2 is just polynomial, the exponential will dominate, implying that function grows very fast. Thus,
this will not be practical except for very small In summary, brute force is not an option.

Dynamic Programming Approach: This problem, like other dynamic programming problems involves determining
a structure (in this case, a parenthesization). We want to break the problem into subproblems, whose solutions
can be combined to solve the global problem. As is common to any DP solution, we need to find some way to
break the problem into smaller subproblems, and we need to determine a recursive formulation, which represents
the optimum solution to each problem in terms of solutions to the subproblems. Let us think of how we can do
this.

Since matrices cannot be reordered, it makes sense to think about sequences of matridgs. dextote the

result of multiplying matrices throughyj. It is easy to see that;_ ; is ap;—; x p; matrix. (Think about this for

a second to be sure you see why.) Now, in order to determine how to perform this multiplication optimally, we
need to make many decisions. What we want to do is to break the problem into problems of a similar structure.
In parenthesizing the expression, we can consider the highest level of parenthesization. At this level we are
simply multiplying two matrices together. That is, forahyl < k <n —1,

Alun - Alk . Ak+1“n~

Thus the problem of determining the optimal sequence of multiplications is broken up into two questions: how
do we decide where to split the chain (what® and how do we parenthesize the subchding. andAx1.,?
The subchain problems can be solved recursively, by applying the same scheme.

So, let us think about the problem of determining the best value @kt this point, you may be tempted to
consider some clever ideas. For example, since we want matrices with small dimensions, pick the kalue of
that minimizesp,. Although this is not a bad idea, in principle. (After all it might work. It just turns out
that it doesn't in this case. This takes a bit of thinking, which you should try.) Instead, as is true in almost all
dynamic programming solutions, we will do the dumbest thing of simply considatimgssiblechoices ofk,

and taking the best of them. Usually trying all possible choices is bad, since it quickly leads to an exponential
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number of total possibilities. What saves us here is that there areqnly) different sequences of matrices.
(There are(g) = n(n — 1)/2 ways of choosing andj to form A;_; to be precise.) Thus, we do not encounter
the exponential growth.

Notice that our chain matrix multiplication problem satisfies the principle of optimality, because once we decide
to break the sequence into the proddgt . - Ax+1..», We should compute each subsequence optimally. That is,
for the global problem to be solved optimally, the subproblems must be solved optimally as well.

Dynamic Programming Formulation: We will store the solutions to the subproblems in a table, and build the table
in a bottom-up manner. Fdr< i < j < n, letm]i, j] denote the minimum number of multiplications needed
to computed; ;. The optimum cost can be described by the following recursive formulation.

Basis: Observe that if = j then the sequence contains only one matrix, and so the cost is 0. (There is nothing
to multiply.) Thus,m[i, ] = 0.
Step: If ¢ < j, then we are asking about the produgt ;. This can be split by considering eakhi < k < j,
asA; ptimesA,1 ;.
The optimum times to computé; ;, and A, ; are, by definitioni[i, k] andm[k + 1, j], respectively.
We may assume that these values have been computed previously and are already stored in our array. Since
A; i is ap;_1 x pi matrix, andAyy;.; is ap, x p; matrix, the time to multiply them ig; _1pip;. This
suggests the following recursive rule for computing, j].

mli,i] = 0
m[l,j] = ZI<I}€II<1](m[Z, k] + m[k: + 1,j] +pi_1pkpj) fori < 7.

Akl j

AiAi1 o A A A

?
Fig. 8: Dynamic Programming Formulation.

It is not hard to convert this rule into a procedure, which is given below. The only tricky part is arranging the
order in which to compute the values. In the process of computifigj] we need to access valuesi, k] and

m[k+ 1, j] for k lying between andj. This suggests that we should organize our computation according to the
number of matrices in the subsequence. et j—i+1 denote the length of the subchain being multiplied. The
subchains of length In{[i, ]) are trivial to compute. Then we build up by computing the subchains of lengths
2,3,...,n. The final answer isn[1,n]. We need to be a little careful in setting up the loops. If a subchain of
length L starts at position, thenj = i + L — 1. Since we wanj < n, this means that+ L — 1 < n, orin

other words; < n — L+ 1. So our loop for runs from 1 ton — L + 1 (in order to keep in bounds). The code

is presented below.

The arrays]i, j] will be explained later. It is used to extract the actual sequence. The running time of the
procedure i (n3). We'll leave this as an exercise in solving sums, but the key is that there are three nested
loops, and each can iterate at mpgimes.

Extracting the final Sequence: Extracting the actual multiplication sequence is a fairly easy extension. The basic
idea is to leave aplit markerindicating what the best split is, that is, the valuecdhat leads to the minimum
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Chain Matrix Multiplication
Matrix-Chain(array p[1..n]) {

array s[1..n-1,2..n]
for i = 1 to n do mli,i] = 0;
for L = 2 to n do {
for i = 1 to n-L+1 do {
j =i L -1;
m[ij] = INFINITY;
for k =i to j-1 do { /I check all splits
q = mfi, k] + mlk+1, j] + p[i-1]*p[k]*p[]]
it (@ < mfi, j]) {
mi.j] = a;
sfij] = k;

/I initialize
/I L = length of subchain

non o+

}
}

return m[1,n] (final cost) and s (splitting markers);

value ofm[i, j]. We can maintain a parallel arrayi, j] in which we will store the value of providing the
optimal split. For example, suppose thét j| = k. This tells us that the best way to multiply the subchain
A;. ; is to first multiply the subchaim; ;, and then multiply the subchaid, . ;, and finally multiply these

together. Intuitivelys[i, j] tells us what multiplication to perforfast Note that we only need to stoséi, j]
when we have at least two matrices, that ig, if .

The actual multiplication algorithm uses thjg, j] value to determine how to split the current sequence. Assume

that the matrices are stored in an array of matri¢gs.n|, and thats[i, j] is global to this recursive procedure.
The recursive procedure Mult does this computation and below returns a matrix.

Extracting Optimum Sequence
Mult(i, j) {
if (i ==)) /I basis case
return A[i];
else {
k = s[i]
X = Mult(i, k) /I X = AJil...A[K]
Y = Multk+1, j) II'Y = Alk+1]...A[]]
return X*Y;

/I multiply matrices X and Y

In the figure below we show an example. This algorithm is tricky, so it would be a good idea to trace through
this example (and the one given in the text). The initial set of dimension&ate6, 2, 7) meaning that we

are multiplying 4; (5 x 4) times As (4 x 6) times A3 (6 x 2) times A4 (2 x 7). The optimal sequence is
((A1(A2435))Ag).

Lecture 6: Dynamic Programming: Minimum Weight Triangulation

Read: This is not covered in CLRS.
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Final order

AL Ay Ay Ay

Fig. 9: Chain Matrix Multiplication Example.

Polygons and Triangulations: Let’s consider a geometric problem that outwardly appears to be quite different from
chain-matrix multiplication, but actually has remarkable similarities. We begin with a number of definitions.
Define apolygonto be a piecewise linear closed curve in the plane. In other words, we form a cycle by joining
line segments end to end. The line segments are callexidbsof the polygon and the endpoints are called the
vertices A polygon issimpleif it does not cross itself, that is, if the sides do not intersect one another except
for two consecutive sides sharing a common vertex. A simple polygon subdivides the planeimariits, its
boundaryand itsexterior. A simple polygon is said to beonvexf every interior angle is at most 180 degrees.
Vertices with interior angle equal to 180 degrees are normally allowed, but for this problem we will assume that
no such vertices exist.

Polygon Simple polygon Convex polygon
Fig. 10: Polygons.

Given a convex polygon, we assume that its vertices are labeled in counterclockwis@ oedér, . .., v,).
We will assume that indexing of vertices is done modulgovy = v,,. This polygon has sidesv; _1v;.

Given two nonadjacent sidesandv;, wherei < j—1, the line segment;o; is achord (If the polygon is simple

but not convex, we include the additional requirement that the interior of the segment must lie entirely in the
interior of P.) Any chord subdivides the polygon into two polygons;, vit+1, . .., v;), and(v;, vj11,. .., v;).

A triangulation of a convex polygorP is a subdivision of the interior aP into a collection of triangles with
disjoint interiors, whose vertices are drawn from the verticeB oEquivalently, we can define a triangulation

as a maximal séef’ of nonintersecting chords. (In other words, every chord that is riBtimersects the interior

of some chord irl'.) It is easy to see that such a set of chords subdivides the interior of the polygon into a
collection of triangles with pairwise disjoint interiors (and hence the niaiawegulation). It is not hard to prove

(by induction) that every triangulation of ansided polygon consists of — 3 chords and» — 2 triangles.
Triangulations are of interest for a number of reasons. Many geometric algorithm operate by first decomposing
a complex polygonal shape into triangles.

In general, given a convex polygon, there are many possible triangulations. In fact, the number is exponential in
n, the number of sides. Which triangulation is the “best”? There are many criteria that are used depending on
the application. One criterion is to imagine that you must “pay” for the ink you use in drawing the triangulation,
and you want to minimize the amount of ink you use. (This may sound fanciful, but minimizing wire length is an
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important condition in chip design. Further, this is one of many properties which we could choose to optimize.)
This suggests the following optimization problem:

Minimum-weight convex polygon triangulation: Given a convex polygon determine the triangulation that
minimizes the sum of the perimeters of its triangles. (See Fig. 11.)

A triangulation Lower weight triangulation
Fig. 11: Triangulations of convex polygons, and the minimum weight triangulation.
Given three distinct vertices, v;, v, we define theveightof the associated triangle by the weight function
w(vi, v, vk) = |vivj] + |vjv] + [vkvil,
where|v,;v;| denotes the length of the line segmen;.

Dynamic Programming Solution: Let us consider afn + 1)-sided polygonP = (v, v1,...,v,). Let us assume
that these vertices have been numbered in counterclockwise order. To derive a DP formulation we need to define
a set of subproblems from which we can derive the optimum solutiond Roi < j < n, definet[i, j] to be the
weight of the minimum weight triangulation for the subpolygon that lies to the right of directed chgrdhat
is, the polygon with the counterclockwise vertex sequepggy; 11, . ..,v;). Observe that if we can compute
this quantity for all such andj, then the weight of the minimum weight triangulation of the entire polygon can
be extracted ag0, n]. (As usual, we only compute the minimum weight. But, it is easy to modify the procedure
to extract the actual triangulation.)

As a basis case, we define the weight of the trivial “2-sided polygon” to be zero, implyingihat 1] = 0.

In general, to comput#s, j], consider the subpolygo;, viy1, - . ., v,), wherej > i+ 1. One of the chords of

this polygon is the side;v;. We may split this subpolygon by introducing a triangle whose base is this chord,
and whose third vertex is any vertex, wherei < k < j. This subdivides the polygon into the subpolygons
(Vi, Vig1, - .. vx) @nd (v, V41, - . . vj) Whose minimum weights are already known to ug(ast] andt[k, j].

In addition we should consider the weight of the newly added triadglgy,v;. Thus, we have the following
recursive rule:

i 5] = 0 ifj=i+1
= min, << (t[i, k] + tlk, j] + w(vivevy)) if >4+ 1.

The final output is the overall minimum weight, whichi§), n]. This is illustrated in Fig. 12

Note that this has almost exactly the same structure as the recursive definition used in the chain matrix multipli-
cation algorithm (except that some indices are different by 1.) The €m#é) algorithm can be applied with
only minor changes.

Relationship to Binary Trees: One explanation behind the similarity of triangulations and the chain matrix multipli-
cation algorithm is to observe that both are fundamentally related to binary trees. In the case of the chain matrix
multiplication, the associated binary tree is the evaluation tree for the multiplication, where the leaves of the
tree correspond to the matrices, and each node of the tree is associated with a product of a sequence of two or
more matrices. To see that there is a similar correspondence here, consjdetan-sided convex polygon
P = (vg,v1,...,v,), and fix one side of the polygon (sayv,;). Now consider a rooted binary tree whose root
node is the triangle containing sid@guv,,, whose internal nodes are the nodes of the dual tree, and whose leaves

Lecture Notes 20 CMSC 451

www.manaraa.com



Triangulate
at cost t[k,j]

cost=w(v;,V, V;)

Triangulate
at cost tli.kl

Fig. 12: Triangulations and tree structure.

correspond to the remaining sides of the tree. Observe that partitioning the polygon into triangles is equivalent
to a binary tree witn leaves, and vice versa. This is illustrated in Fig. 13. Note that every triangle is associated
with an internal node of the tree and every edge of the original polygon, except for the distinguished starting
sidetyw,, is associated with a leaf node of the tree.

root
A v \\./1 . root

A
Asm i o o\
Vaep HA
AN -y
Vs A’G’”v'e’ Ar AAA A AA A Ay AcAAy

Fig. 13: Triangulations and tree structure.

Once you see this connection. Then the following two observations follow easily. Observe that the associated
binary tree has leaves, and hence (by standard results on binary trees)l internal nodes. Since each

internal node other than the root has one edge entering it, thene-c2edges between the internal nodes. Each
internal node corresponds to one triangle, and each edge between internal nodes corresponds to one chord of the
triangulation.

Lecture 7: Greedy Algorithms: Activity Selection and Fractional Knapack
Read: Sections 16.1 and 16.2 in CLRS.

Greedy Algorithms: In many optimization algorithms a series of selections need to be made. In dynamic program-
ming we saw one way to make these selections. Namely, the optimal solution is described in a recursive manner,
and then is computed “bottom-up”. Dynamic programming is a powerful technique, but it often leads to algo-
rithms with higher than desired running times. Today we will consider an alternative design technique, called
greedy algorithmsThis method typically leads to simpler and faster algorithms, but it is not as powerful or as
widely applicable as dynamic programming. We will give some examples of problems that can be solved by
greedy algorithms. (Later in the semester, we will see that this technique can be applied to a number of graph
problems as well.) Even when greedy algorithms do not produce the optimal solution, they often provide fast
heuristics (nonoptimal solution strategies), are often used in finding good approximations.
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Activity Scheduling: Activity schedulingand it is a very simple scheduling problem. We are given aSset

{1,2,...,n} of n activitiesthat are to be scheduled to use some resource, where each activity must be started
at a given start time; and ends at a given finish tim&. For example, these might be lectures that are to be
given in a lecture hall, where the lecture times have been set up in advance, or requests for boats to use a repair
facility while they are in port.

Because there is only one resource, and some start and finish times may overlap (and two lectures cannot be
given in the same room at the same time), not all the requests can be honored. We say that two aatities

Jj arenoninterferingif their start-finish intervals do not overlap, more formally;, f;) N [s;, f;) = 0. (Note

that making the intervalbalf open two consecutive activities are not considered to interfere.) ddtiity
scheduling problerts to select a maximum-size set of mutually noninterfering activities for use of the resource.
(Notice that goal here is maximum number of activities, not maximum utilization. Of course different criteria
could be considered, but the greedy approach may not be optimal in general.)

How do we schedule the largest number of activities on the resource? Intuitively, we do not like long activities,
because they occupy the resource and keep us from honoring other requests. This suggests the following greedy
strategy: repeatedly select the activity with the smallest durafipr ;) and schedule it, provided that it does

not interfere with any previously scheduled activities. Although this seems like a reasonable strategy, this turns
out to be nonoptimal. (See Problem 17.1-4 in CLRS). Sometimes the design of a correct greedy algorithm
requires trying a few different strategies, until hitting on one that works.

Here is a greedy strategy that does work. The intuition is the same. Since we do not like activities that take a
long time, let us select the activity that finishes first and schedule it. Then, we skip all activities that interfere
with this one, and schedule the next one that has the earliest finish time, and so on. To make the selection process
faster, we assume that the activities have been sorted by their finish times, that is,

... < f

Assuming this sorting, the pseudocode for the rest of the algorithm is presented below. The output igithe list
of scheduled activities. The varialppeevholds the index of the most recently scheduled activity at any time, in
order to determine interferences.

Greedy Activity Scheduler

schedule(s[1..n], f[1..n]) { /I given start and finish times
/I we assume f[1..n] already sorted
List A = <1> /I schedule activity 1 first
prev = 1
fori = 2 ton
if (s[i] >= flprev]) { /I no interference?
append i to A; prev = i /I schedule i next
}
return A
}

It is clear that the algorithm is quite simple and efficient. The most costly activity is that of sorting the activities
by finish time, so the total running time &(n log n). Fig. 14 shows an example. Each activity is represented
by its start-finish time interval. Observe that the intervals are sorted by finish time. Event 1 is scheduled first. It
interferes with activity 2 and 3. Then Event 4 is scheduled. It interferes with activity 5 and 6. Finally, activity 7
is scheduled, and it intereferes with the remaining activity. The final outdut is 7}. Note that this is not the

only optimal schedule{2, 4, 7} is also optimal.

Proof of Optimality: Our proof of optimality is based on showing that the first choice made by the algorithm is the

best possible, and then using induction to show that the rest of the choices result in an optimal schedule. Proofs
of optimality for greedy algorithms follow a similar structure. Suppose that you have any nongreedy solution.
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Fig. 14: An example of the greedy algorithm for activity scheduling. The final sched{ile4s7}.

Show that its cost can be reduced by being “greedier” at some point in the solution. This proof is complicated a
bit by the fact that there may be multiple solutions. Our approach is to show that any schedule that is not greedy
can be made more greedy, without decreasing the number of activities.

Claim: The greedy algorithm gives an optimal solution to the activity scheduling problem.

Proof: Consider any optimal schedul that is not the greedy schedule. We will construct a new optimal
scheduled’ that is in some sense “greedier” than Order the activities in increasing order of finish

time. LetA = (x1,x9,...,2%) be the activities ofA. SinceA is not the same as the greedy schedule,
consider the first activity:; where these two schedules differ. That is, the greedy schedule is of the form
G = (z1,22,...,2j-1,9;,...) Whereg; # z;. (Note thatk > j, since otherwis& would have more

activities than the optimal schedule, which would be a contradiction.) The greedy algorithm selects the
activity with the earliest finish time that does not conflict with any earlier activity. Thus, we knowythat
does not conflict with any earlier activity, and it finishes beteye
Consider the modified “greedier” scheduléthat results by replacing; with g; in the scheduled. (See
Fig. 15.) That is,

A/ = <.Z‘1,.132, ey Lj—15955, L5415 - -, .I‘k->.

Al e | L e
o [ ] % [---

Fig. 15: Proof of optimality for the greedy schedufe{ 3).

L e [ | [Pe]Ps]

This is a feasible schedule. (Singecannot conflict with the earlier activities, and it does not conflict with
later activities, because it finishes befarg) It has the same number of activities Asand therefored’
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is also optimal. By repeating this process, we will eventually condeirito &G, without decreasing the
number of activities. Thereforé; is also optimal.

Fractional Knapsack Problem: The classica(0-1) knapsack problens a famous optimization problem. A thief is
robbing a store, and findsitems which can be taken. Thth item is worthv; dollars and weighs,; pounds,
wherev; andw; are integers. He wants to take as valuable a load as possible, but has a knapsack that can only
carry W total pounds. Which items should he take? (The reason that this is called 0-1 knapsack is that each
item must be left (0) or taken entirely (1). It is not possible to take a fraction of an item or multiple copies of an
item.) This optimization problem arises in industrial packing applications. For example, you may want to ship
some subset of items on a truck of limited capacity.

In contrast, in théractional knapsack problente setup is exactly the same, but the thief is allowed to take any
fraction of an item for a fraction of the weight and a fraction of the value. So, you might think of each object as
being a sack of gold, which you can partially empty out before taking.

The 0-1 knapsack problem is hard to solve, and in fact it is an NP-complete problem (meaning that there
probably doesn't exist an efficient solution). However, there is a very simple and efficient greedy algorithm for
the fractional knapsack problem.

As in the case of the other greedy algorithms we have seen, the idea is to find the right order in which to process
items. Intuitively, it is good to have high value and bad to have high weight. This suggests that we first sort the
items according to some function that is an decreases with value and increases with weight. There are a few
choices that you might try here, but only one works. ket v; /w; denote thevalue-per-pound ratioWe sort

the items in decreasing order pf, and add them in this order. If the item fits, we take it all. At some point
there is an item that does not fit in the remaining space. We take as much of this item as possible, thus filling
the knapsack entirely. This is illustrated in Fig. 16

| Y m Y
35
N 40| $140 30| $90 40( $160
60
+ +
— — +
40 —
30 20| $100 20( $100
20 + + 20| $100
10 — —
. . ) [5]s0 (5] s30 -
knapsack $30 $20 $100 $90 $160 $270 $220 $260
p= 6.0 20 50 30 40
Greedy solution to Greedy solution Optimal solution
Input fractional problem. to 0-1 problem. to 0-1 problem.

Fig. 16: Example for the fractional knapsack problem.

Correctness: It is intuitively easy to see that the greedy algorithm is optimal for the fractional problem. Given a room
with sacks of gold, silver, and bronze, you would obviously take as much gold as possible, then take as much
silver as possible, and then as much bronze as possible. But it would never benefit you to take a little less gold
so that you could replace it with an equal volume of bronze.

More formally, suppose to the contrary that the greedy algorithm is not optimal. This would mean that there is
an alternate selection that is optimal. Sort the items of the alternate selection in decreasing prdeluileg.
Consider the first itenhon which the two selections differ. By definition, greedy takes a greater amount of item

1 than the alternate (because the greedy always takes as much as it can). Let us say that greedydekes
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units of objecti than the alternate does. All the subsequent elements of the alternate selection are of lesser value
thanv;. By replacingr units of any such items with units of itemi, we would increase the overall value of the
alternate selection. However, this implies that the alternate selection is not optimal, a contradiction.

Nonoptimality for the 0-1 Knapsack: Next we show that the greedy algorithm is not generally optimal in the 0-1
knapsack problem. Consider the example shown in Fig. 16. If you were to sort the iteimshn you would
first take the items of weight 5, then 20, and then (since the item of weight 40 does not fit) you would settle for
the item of weight 30, for a total value 880 + $100 + $90 = $220. On the other hand, if you had been less
greedy, and ignored the item of weight 5, then you could take the items of weights 20 and 40 for a total value of
$100 + $160 = $260. This feature of “delaying gratification” in order to come up with a better overall solution
is your indication that the greedy solution is not optimal.

Lecture 8: Greedy Algorithms: Huffman Coding
Read: Section 16.3 in CLRS.

Huffman Codes: Huffman codes provide a method of encoding data efficiently. Normally when characters are coded
using standard codes like ASCII, each character is represented by a fixeddedgthordof bits (e.g. 8 bits
per character). Fixed-length codes are popular, because its is very easy to break a string up into its individual
characters, and to access individual characters and substrings by direct indexing. However, fixed-length codes
may not be the most efficient from the perspective of minimizing the total quantity of data.

Consider the following example. Suppose that we want to encode strings over the (rather limited) 4-character
alphabetC' = {q, b, ¢, d}. We could use the following fixed-length code:

Character al b| c| d
Fixed-Length Codeword 00 | 01 | 10 | 11

A string such as “abacdaacac” would be encoded by replacing each of its characters by the corresponding binary
codeword.

a b a ¢ d a a ¢ a ¢
00O 01 00O 10 11 00O 00 10 OO0 10

The final 20-character binary string would be “00010010110000100010".

Now, suppose that you knew the relative probabilities of characters in advance. (This might happen by analyzing
many strings over a long period of time. In applications like data compression, where you want to encode one
file, you can just scan the file and determine the exact frequencies of all the characters.) You can use this
knowledge to encode strings differently. Frequently occurring characters are encoded using fewer bits and less
frequent characters are encoded using more bits. For example, suppose that characters are expected to occur
with the following probabilities. We could desigrvariable-length codevhich would do a better job.

Character a b c d
Probability 0.60| 0.05| 0.30| 0.05
Variable-Length Codeword 0 | 110 10| 111

Notice that there is no requirement that the alphabetical order of character correspond to any sort of ordering
applied to the codewords. Now, the same string would be encoded as follows.

a b a ¢ d a a ¢ a ¢
0O 110 0 10 1112 O O 10 O 10
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Thus, the resulting 17-character string would be “01100101110010010". Thus, we have achieved a savings of
3 characters, by using this alternative code. More generally, what would be the expected savings for a string of
lengthn? For the 2-bit fixed-length code, the length of the encoded string igjusits. For the variable-length

code, the expected length of a single encoded character is equal to the sum of code lengths times the respective
probabilities of their occurrences. The expected encoded string length is {imes the expected encoded
character length.

n(0.60 - 1+ 0.05-3+0.30 -2+ 0.05-3) = n(0.60 + 0.15+ 0.60 + 0.15) = 1.5n.

Thus, this would represent a 25% savings in expected encoding length. The question that we will consider today
is how to form the best code, assuming that the probabilities of character occurrences are known.

Prefix Codes: One issue that we didn’t consider in the example above is whether we will be atdeddehe string,
once encoded. In fact, this code was chosen quite carefully. Suppose that instead of coding the character ‘a’
as 0, we had encoded it as 1. Now, the encoded string “111” is ambiguous. It might be “d” and it might be
“aaa”. How can we avoid this sort of ambiguity? You might suggest that we add separation markers between
the encoded characters, but this will tend to lengthen the encoding, which is undesirable. Instead, we would like
the code to have the property that it can be uniquely decoded.

Note that in both the variable-length codes given in the example above no codewgnefi af another. This

turns out to be the key property. Observe that if two codewords did share a common prefix—e.g01 and

b — 00101, then when we se@0101 ... how do we know whether the first character of the encoded message

is a or b. Conversely, if no codeword is a prefix of any other, then as soon as we see a codeword appearing as
a prefix in the encoded text, then we know that we may decode this without fear of it matching some longer
codeword. Thus we have the following definition.

Prefix Code: An assignment of codewords to characters so that no codeword is a prefix of any other.

Observe that any binary prefix coding can be described by a binary tree in which the codewords are the leaves
of the tree, and where a left branch means “0” and a right branch means “1”. The code given earlier is shown
in the following figure. The length of a codeword is just its depth in the tree. The code given earlier is a prefix
code, and its corresponding tree is shown in the following figure.

110 111

Fig. 17: Prefix codes.

Decoding a prefix code is simple. We just traverse the tree from root to leaf, letting the input character tell
us which branch to take. On reaching a leaf, we output the corresponding character, and return to the root to
continue the process.

Expected encoding length:Once we know the probabilities of the various characters, we can determine the total
length of the encoded text. Le{x) denote the probability of seeing characterand letdr(z) denote the
length of the codeword (depth in the tree) relative to some prefixitrééhe expected number of bits needed to
encode a text with characters is given in the following formula:

B(T)=nY_ p(z)dr(x).
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This suggests the following problem:

Optimal Code Generation: Given an alphabet’ and the probabilitieg(x) of occurrence for each character
x € C, compute a prefix cod€ that minimizes the expected length of the encoded bit-sti#i{d;).

Note that the optimal code is not unique. For example, we could have complemented all of the bits in our earlier
code without altering the expected encoded string length. There is a very simple algorithm for finding such a
code. It was invented in the mid 1950's by David Huffman, and is calletlifiman code. By the way, this

code is used by the Unix utilitpack for file compression. (There are better compression methods however. For
example,compress, gzip and many others are based on a more sophisticated method calleentipel-Ziv
coding)

Huffman’s Algorithm: Here is the intuition behind the algorithm. Recall that we are given the occurrence probabil-
ities for the characters. We are going to build the tree up from the leaf level. We will take two chataatets
y, and “merge” them into a singkuper-charactercalled z, which then replaces andy in the alphabet. The
characterz will have a probability equal to the sum eofandy’s probabilities. Then we continue recursively
building the code on the new alphabet, which has one fewer character. When the process is completed, we know
the code forz, say010. Then, we append a 0 and 1 to this codeword, givigid for 2 and0101 for .

Another way to think of this, is that we mergeandy as the left and right children of a root node called’hen

the subtree for replaces: andy in the list of characters. We repeat this process until only one super-character
remains. The resulting tree is the final prefix tree. Sin@ndy will appear at the bottom of the tree, it seem
most logical to select the two characters with the smallest probabilities to perform the operation on. The result
is Huffman’s algorithm. It is illustrated in the following figure.

The pseudocode for Huffman’s algorithm is given below. Cetlenote the set of characters. Each character

x € C'is associated with an occurrence probabilityrob. Initially, the characters are all stored irpdority
queueR. Recall that this data structure can be built initially(rin) time, and we can extract the element with

the smallest key iD(logn) time and insert a new element i(logn) time. The objects i) are sorted by
probability. Note that with each execution of the for-loop, the number of items in the queue decreases by one.
So, aftern — 1 iterations, there is exactly one element left in the queue, and this is the root of the final prefix
code tree.

Correctness: The big question that remains is why is this algorithm correct? Recall that the cost of any encoding tree
TisB(T) =), p(x)dr(x). Our approach will be to show that any tree that differs from the one constructed by
Huffman’s algorithm can be converted into one that is equal to Huffman’s tree without increasing its cost. First,
observe that the Huffman tree il binary treg meaning that every internal node has exactly two children. It
would never pay to have an internal node with only one child (since such a node could be deleted), so we may
limit consideration to full binary trees.

Claim: Consider the two charactetsandy with the smallest probabilities. Then there is an optimal code tree
in which these two characters are siblings at the maximum depth in the tree.

Proof: Let T' be any optimal prefix code tree, and teind ¢ be two siblings at the maximum depth of the
tree. Assume without loss of generality théb) < p(c) andp(z) < p(y) (if this is not true, then rename
these characters). Now, singeandy have the two smallest probabilities it follows thdtr) < p(b) and
p(y) < p(e). (In both cases they may be equal.) Becausedc are at the deepest level of the tree we
know thatd(b) > d(x) andd(c) > d(y). (Again, they may be equal.) Thus, we haxé) — p(x) > 0 and
d(b) — d(z) > 0, and hence their product is nonnegative. Now switch the positionsaoflb in the tree,
resulting in a new treg”. This is illustrated in the following figure.

Next let us see how the cost changes as we go ffotn 7”. Almost all the nodes contribute the same
to the expected cost. The only exception are nadasdb. By subtracting the old contributions of these
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Fig. 18: Huffman’s Algorithm.
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Huffman’s Algorithm

Huffman(int n, character C[1..n]) {

Q=C¢C

fori = 1 to n1 {
z = new internal tree node;
zleft = x = Q.extractMin();
z.right = y = Q.extractMin();
z.prob = x.prob + y.prob;
Q.insert(z);

}

/I priority queue

/I extract smallest probabilities

/I z’s probability is their sum
/I insert z into queue

return the last element left in Q as the root;

Cost change =

=(p(b)—p(x))(d(b)-d(x))

<0

4

Cost change =

=(p(c)=p())(d(c)-d(y))
<0

Fig. 19: Correctness of Huffman’s Algorithm.

nodes and adding in the new contributions we have

B(I') = B(T) - p(a)d(x) + p(a)d(b) — p(b)d(s) + p(b)d(z)
= B(T) + pl(a)(d(b) — d(x)) — p(b)(d(b) — d(x))
— B(T) - (p(b) — pla))(d(b) - d(x))
< B(T)  becausép(b) - p(x))(d(b) - d(z)) > 0.

Thus the cost does not increase, implying thats an optimal tree. By switching with ¢ we get a new
treeT”, which by a similar argument is also optimal. The final tféesatisfies the statement of the claim.

The above theorem asserts that the first step of Huffman’s algorithm is essentially the proper one to perform.
The complete proof of correctness for Huffman'’s algorithm follows by induction ¢since with each step, we

eliminate exactly one character).

Claim: Huffman’s algorithm produces the optimal prefix code tree.

Proof: The proof is by induction on, the number of characters. For the basis case,1, the tree consists of
a single leaf node, which is obviously optimal.
Assume inductively that when strictly fewer tharcharacters, Huffman’s algorithm is guaranteed to pro-
duce the optimal tree. We want to show it is true with exastlgharacters. Suppose we have exagtly
characters. The previous claim states that we may assume that in the optimal tree, the two characters of
lowest probabilityz andy will be siblings at the lowest level of the tree. Remavandy, replacing them

with a new character whose probability i(z)

= p(x) + p(y). Thusn — 1 characters remain.

Consider any prefix code trdémade with this new set af — 1 characters. We can convert it into a prefix
code treel” for the original set of characters by undoing the previous operation and replawiith =
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andy (adding a “0” bit forz and a “1” bit fory). The cost of the new tree is

B(T") = B(T)~-p(2)d(z) + p(x)(d(2) + 1) + p(y)(d(2) + 1)
= B(T) - (p(=) + p(y))d(z) + (p(z) + p(y))(d(z) + 1)
= B(T)+ (p(x) + p(y))(d(2) + 1 —d(z))
= B(T)+p(z) + p(y).

Since the change in cost depends in no way on the structure of thé' tteeminimize the cost of the
final treeT”’, we need to build the tré€ onn — 1 characters optimally. By induction, this exactly what
Huffman’s algorithm does. Thus the final tree is optimal.

Lecture 9: Graphs: Background and Breadth First Search
Read: Review Sections 22.1 and 22.2 CLR.

Graph Algorithms: We are now beginning a major new section of the course. We will be discussing algorithms for
both directed and undirected graphs. Intuitivehgraphis a collection of vertices or nodes, connected by a
collection of edges. Graphs are extremely important because they are a very flexible mathematical model for
many application problems. Basically, any time you have a set of objects, and there is some “connection” or “re-
lationship” or “interaction” between pairs of objects, a graph is a good way to model this. Examples of graphs in
application includeommunicatiorandtransportation networksVLSl and other sorts dbgic circuits, surface
meshesaised for shape description in computer-aided design and geographic information sysésmdence
constraintsn scheduling systems. The list of application is almost too long to even consider enumerating it.

Most of the problems in computational graph theory that we will consider arise because they are of importance
to one or more of these application areas. Furthermore, many of these problems form the basic building blocks
from which more complex algorithms are then built.

Graphs and Digraphs: Most of you have encountered the notions of directed and undirected graphs in other courses,
so we will give a quick overview here.

Definition: A directed graph(or digraph) G = (V, E) consists of a finite sét’, called theverticesor nodes
and E, a set ofordered pairs called theedgesof G. (Another way of saying this is thdf is a binary
relation onV’.)

Observe thaself-loopsare allowed by this definition. Some definitions of graphs disallow this.